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Abstract

A criterion of convergence for general Hermite—Fejér type interpolation of higher order on
an arbitrary system of nodes is given.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let Ny ={1,3,5,...} and N; ={2,4,6,...}. Let neN(n=2), m,eN (k=
1,2,...,n, n=2,3,...), and

Xon = 1Z2X1,>X0,> - >Xp2Xp10=—1, n=23 ... (1.1)

In what follows we shall often omit the superfluous notations, i.e., "y, Xy, ... Will be
denoted by miy, xy, ..., etc. Throughout this paper let N == N, ==Y ;_, my, — 1 and
M = MaX|<k<n n>2 Mkn< + 00. Denote by Py the set of polynomials of degree at
most N and by A4 the fundamental polynomials for Hermite interpolation, i.e.,
Ay e Py satisfy

AP (xg) = gy p=0.1,.comg—1, j=0,1, .. ,m—1,
¢.k=12 .. n (1.2)
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The Hermite—Fejér type interpolation for f'e C[—1, 1] is given by
Hnm(f7 X) = Zf(xk)AOk(x)' (13)
k=1

In [5] the author established a criterion of convergence for Hermite—Fejér type
interpolation of higher order on an arbitrary system of nodes as follows (|| - || stands
for the uniform norm on [—1,1] and f;(x) = x', i =1,2,...).

Theorem A (Shi [5, Theorem 4.2]). Let my, = meN,. Then
lim |[Hun(f) = f]| =0 (1.4)
n— oo

holds for all f € C|—1,1] if and only if

n

> Aol

k=1

|| Hym|| = = O(1) (1.5)

is true and (1.4) holds for the two monomials f = f;, i =1,2.

The main aim of this paper is to establish a criterion of convergence for general
Hermite—Fejér type interpolation of higher order on an arbitrary system of nodes,
replacing the assumption that my,, = me N, by the assumption that all my, € N,. That
is the following

Theorem. Let all my, € N,. Then relation (1.4) holds for all '€ C[—1,1] if and only if
relation (1.5) is true and (1.4) holds for the two monomials f = f;, i =1,2.

This extension is not trivial. To prove the theorem we have to prove a series of
auxillary lemmas, which are of independent interest and put in the next section. Then
we give the proof of the theorem in the last section.

2. Auxiliary lemmas
First we state some known results needed later.
Lemma A (Borwein and Erdélyi [1, p. 235]). Let PeP,. Then
1 Ti Ti
PONITOINIP = Ly + 52 = D"+ [y = (32 = )P Pl
>, (2.1)

where T, stands for the nth Chebyshev polynomial of the first kind.
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Lemma B (Shi [5, Lemma 4.1]). Let PyeP,, k=1,2,....M, and 1=y, >y,>

sy - L If
M
[(x = yi) Pe(X)||| = 1y
k=1
and
M
SRS J=1,2,.0, M,
k=1
then

z(nzlun + V”) .

In particular, if M =1 and P1(y1) =0, |[y1|<], then
4np,,

||P1]| < 1/2-
(11—

Lemma C (Shi [5, Theorem 2.1]). If for a fixed n, my, — jis odd and j<i<my — 1 then
1
a0 < d7 ()], xel-11), 1<k<n, (22)
where di .= max{|x; — xx_1]|, |xk — Xx11|}, k=1,2,....n

Lemma 1. Let all my, eNy. If
||Han = Uy, (23)

then

<8mPn’u,. (2.4)

n
> 1A

k=1

Proof. By the same argument as that of [5, Theorem 2.3] we can get

n

(x — xp) Ak (x [(x — xp) A (x)| < (x — xx)* Aok (x), xeR.
) Z >

k=1 k=1
(2.5)

Hence by (2.3) we obtain

n

Z (X - Xk)A]k(X) <4#/17

k=1

which according to Lemma B gives (2.4) (by deg Ay <nm). [
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Lemma 2. Let A} be the fundamental polynomials for Hermite interpolation based on
the system of nodes

Xpy, = Xim, O<a<l, k=12,...,n, n=23, ... (2.6)
Then with the notations x = cos 0 and x* = cos 0"

0y, = arccos(acos Or,), k=1,2,...,n, (2.7)

Aj’fk(x):ajAjk(x/a), k=12,....n, j=0,1,...,m —1, (2.8)

‘Irﬁ)% |45 (x)] =a’ |I|n<al>; |4 (x)|, k=1,2,...,n, j=0,1,....,m—1,(2.9)

and

n

> Ayl

k=1

S[a_l + (a—z - 1)]/2]HHHnrn||- (2.10)

1 Hl| =

Proof. Relations (2.7)—(2.9) may be obtained directly from the definition. Now let us
prove (2.10). Assume that

Z [ o (¥)] = max Z [Aoc(x)],  [y|<1/a.
This relation, together with (2.8), yields

|| an = maX Z |A0k | —max Z |A0k X/Cl

= | max Z | Aok (x |=Z [ Aok ()] (2.11)
k=1
If |y|<1 then by (2.11) we have that
nm Z |A0k |<||Hnm||

if [y|>1 then by (2.11) and (2.1) we have that

11mH = Z |A0k | = Z [SgnAOk(y)]AOk(y)
k=1

n

[sgn Aok ( y)] Aok

<A+ =) - (- )
k=1

<[yl + (3% = D)2 Hom|
<l '+ @?=D)""Hyl. O
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In the sequel ¢, ¢/, ... will stand for positive constants depending only on m, unless
otherwise indicated; their values may be different at different occurrences, even in
subsequent formulas; in addition, ¢,,¢,’>1 will stand for positive constants
depending only on r and increasing with respect to r, their values may also be
different at different occurrences, even in subsequent formulas.

Lemma 3. Let reN, p>0, and

f(0) = (sinp0)". (2.12)
Then,

F0)|<¢i(rp)’| sinpb™,  0<j<r. (2.13)

Proof (By induction). Relation (2.13) with j =0 is trivial. Suppose now, as an
induction hypothesis, that relation (2.13) holds for all j, j<g<r. Differentiating
(2.12) yields

£/(0) = rp(sin p0)"'cos pO

and then differentiating the above relation ¢ times gives (using the induction
hypothesis)

q . .
Do) =rp Z<q> [(sin p0)']"" (cos p0) T~
=0 \/
<mp Y | |gltr = D)p)/|sinpo " pt
=0 \/
I (q
< ¢g(rp)™ ! sinp0 "1y [
=0 \/

=, (rp)™*"| sin pO]" ' 124
1y .. r— 1
= g1 (rp)™*! | sin po| =,

which shows that relation (2.13) is true for j = ¢+ 1. By induction this proves
(2.13). O

Lemma 4. Let reN, p>0, and

_ [sin(p0/2)]"
9(0) = [sin(0/2)] ' @14
Then
97 (0)|<c;(rp) | sin(0/2)[ "7, 00, 0<j<r. (2.15)

Proof (By induction). Relation (2.14) implies
l9(0)|<|sin(0/2)]",
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which implies that relation (2.15) is true for j = 0. Suppose now, as an induction

hypothesis, that relation (2.15) is true for all j, j<g<r. Rewrite (2.14) as
9(0)[sin(6/2)]" = [sin(p6/2)]".

Differentiating this relation (¢ + 1) times and then using (2.13) (replacing ¢; by ¢;’ in
it) and the induction hypothesis, we get

1970 (0)[sin(0/2)]

= |[sin(p0/2)]")'s*" i(q“) 7(0)[sin(6/2))7 )

0

<eqrt/(rp/2)" Isin(p0/2) "™

+ i( > | sin(0/2)]~ _/Cq+l —j (r/2)q+l—j‘ sin(60/2)[" (q+1—))

Jj=0

q
. g q+1
<cgrt (1) + eqcgn (rp)sin(0/2)) 7 Z( . )

o\ J
q+1 1
<cge1 (rp)™! [ sin(0/2)[ 747! Z(CH. )
=\
<cger (rp)" ] sin(0/2)] !
Then
1D (0) < cqir (rp) " | sin(0/2) 1Y,

which shows that relation (2.15) is true for j = ¢+ 1. By induction this proves
(2.15. O

Lemma 5. Let Yy eP, and

¢(0) = Y(cos ), 0<O<m. (2.16)
Then,
) ¢ J . .
W (cos 0)|<(sinj(9)j2 ; 1pM(0)] (sin0£0), j=1. (2.17)

Proof. First let us prove that
J
Z D(cos ), j=1, (2.18)

where ¢,;(0) is a trigonometric polynomial of degree v and

¢(0) = (=sin0)7, ey (O <l v=1,2,....j. (2.19)
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We use induction. It is easy to see that relations (2.18) and (2.19) hold for j = 1.
Suppose now, as an induction hypothesis, that relations (2.18) and (2.19) are true for
all j, 1<j<gq. By differentiation of (2.18) with j = ¢ we obtain

q
U 0) = e (0)Y" (cos 0) — ey (0" (cos 0) sin 0]
y=1
q+1
=Y [ew/(0) = cvm1,4(0) sin 0]y (cos 0)
y=1
q+1

where ¢ 4(0) = c¢4114(0) = 0 and

Crgr1(0) = ¢ (0) — ¢y—14(0) sin 0. (2.20)

Hence by (2.19) cyt1,4+1(0) = —cgq(0) sin 0 = (—sin 0)7*" and l|cg+1,4+1]| <1 (here
| - || stads for the uniform norm on [0, 2x]); by Bernstein inequality it follows from
(2.20) that |[c,,[|<V]|eyy|| and hence

llevgrill <vilewl + 1

argll<(v+Dgl<(g+ D!, 1<v<g.

This shows that relations (2.18) and (2.19) are true for j = ¢ + 1. By induction this
proves (2.18) and (2.19).

For the proof of (2.17) we again use induction. It is easy to see that relation (2.17)
is true for j = 1. Suppose now, as an induction hypothesis, that relation (2.17) is true
for all j, 1<j<gq. It follows from (2.18), (2.19), and the induction hypothesis that

N 4
WO eosOl< [0+ (g + 1Y 1 cos ) ]
L Jj=1
1 [ q J
< ‘1+1 | (v)
S (Sin H)q+1 |¢ | + q + 1 ; Sln 0 Zl (]5 (0)]
1 [ (g+ Dle
(g+1) q
< (sin 0)7"" O+ (sin 0)7 Z Z 4" ]
1 [ q(qg+1) 'c 1
< (q+1) 0 q
(sin 0)‘1+1 PO+ (sin 0)7 Z ¥

q+1

Cq+1
(sin 6) (g+1)° Z |¢ O

This shows that relation (2.17) is true for j=¢g+ 1 and by induction proves
2.17. O
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Lemma 6. Let 0<0,1<=, g be defined by (2.14), and

¢(0) =p~lg(0 + 1) +9(0 —7)]. (2.21)
Let y be defined by (2.16). Then
(rp)’ i
Weosoy< TP 3 o cocn 0wr, 0<j<r (2.22)
p(sin0)” 10—t

Proof. Suppose without loss of generality that 0 <0< /2. By (2.21) and (2.15)

(J) ¢(rp)’ 1 A 1 A
9001 4 073 o -} 22

Since 0<0<7/2, we have 0< (0 4 1)/2<3n/4 and hence

0 2/0+1 _ 9+r’ 9+T<TL,
sin —2i_1> { n(712/2) 711/22 0+t 0+t n2 0+‘2r 3n (224)
2 22 7-[(2)2271:) 2<2<4.
This implies
.0+t _O0+7 0+t 3n
> < . .
Sz 0, Sy (2.25)
Of course, we have
sin S e
2 = n .
Substituting the above inequalities into (2.23), we obtain
. . J 2 r+j +
gy < GP) n ’ n
1< T
Gm)'| 3 |7
< >0. 2.26
po0—t J (2.26)

Inserting estimation (2.26) into (2.17), we have

W eost)l< 9 L3 600

. i2
(sin0)" 25
_ G L ey(rp)’| 3w |
S (sin0)” &= pro |0t
ci(rp)? i
< ./(. P) ) 3n O
p'(sin0)” |0 —

Lemma 7. Let all my, e Ny or all my,eN,. If
||Han = Uy (2.27)
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then

ekﬂﬁ—ek’ng"ln:w"), k=0,1,....n, n=23,... (2.28)

Proof. The proof follows the line given by Erdos and Turan [3, p. 718] and [2,4]. Let
n=In(n" ) + 2, (2.29)

reN,, and peN;(p=3) such that

1

2r(p—1)<n—1. (2.30)
Suppose that

. 1
0121?211 (6k+1,n - Hk,n) = 0i+l,n - ei,n = 26}1; T= ) (eiJrl,n + Hi,n)a

& :=cost. (2.31)

Let ¢ and y be defined by (2.21) and (2.16), respectively. Observing that y(-) eP,_1,
we see

$(0) = Y(cos 0) = y(x) = Z nf: Y (o) A (x). (2.32)

k=1 j=0

If all my, € N,, then we have by (2.4) and (2.2)
|
ll <y Al <8, 21, 1<ks<n,

which, coupled with (2.27), gives
Al <8m*n’p,,  j=0, 1<k<n. (2.33)

If all my, eNy, then we have by (2.2)
L

which also implies (2.33).
We separate two cases when min{0;,n — 0,}>1/n and when min{0;,n — 0,}
<1/n.
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Case 1: min{0;,n — 6,}>1/n. In [4, p. 537] it is proved that ¢(7)>1. Using this
inequality, and applying (2.31)—(2.33) and (2.22), we obtain

n o mp—1
1<op(@) =D > v ) 4u(d)
k=1 j=0
n_om=lo rp J 3 r4j
=D 30 IR R
o o p(sinOr) O —©
_ Cm(rp)mnz,u,, (37‘6) r+mzn: nil 1
S . . i2
4 On = = (sin 0;)’
< Cni(”l’)m”(m_l)zHﬂ;z 3\
~ pr 5n .

Since the inequality p >3 implies that p — 1 >2p/3, by (2.30) we get rp<3n. Using this
inequality and observing that 6,>n/[2(n + 1)], we get

2 RYS r
1 <Cmnm +4’un <p§ >
n

and hence
3n <™ femn™ ) (2.34)
P
Now choose
1 2
=2 |:2 ll’l(l’lm +4u”):|
and
n—1
p=1+ 2[ } ;
r

which obviously satisfy condition (2.30). From these definitions we can obtain
estimations

r<In(n” ) (2.35)
and
1 m? 44 1 m? 44
r=2 2ln(n W) — 1 22111(’1 Un)s (2.36)
because m>=2, n=2, and u,>1; meanwhile, by (2.29) and (2.35)
n—1 2n—1)—r n
>1+2 —1) = > , . 2.37
po1ea(" ) r T i) (237)

Inserting estimations (2.36) and (2.37) into (2.34) we see

37 In(+4 R 2
5,< T n(nn :un) {le’lm +4M”}2/1n(n +4‘L,,). (238)
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It is clear that for x>0 and x#1

A1 /In x
xl/lnx _ eln(x ) — e.

Using this identity inequality (2.38) becomes
1712
5n<37£ ln(n +4M’1)€2 cil/ln(nmh““”) <Cln(n,un). (239)
n n

Case 2: min{0;,n — 0,} <1/n.In this case let us consider the Hermite interpolation
based on the system of nodes (2.6) with
2

n
= . 2.40
By (2.10)
. ”+1 2n+1\" 3\"
pezli< (" 2 s (14) e, 241)
By means of (2.6) we see that
0* o* 2
azacos 0 = cos 0] = 1 — 2sin’ 2121 _ é)
and hence according to (2.40)
1
0i=2(1-a) > . (2.42)
Similarly, we can conclude that
1
-0,>". 2.43
. (2.43)

Then we can apply the conclusion of Case 1 to the Hermite interpolation based on
the system of nodes (2.6) with (2.40) to obtain (using (2.41))

I
0, — 0, <" M) 01 =23,
’ ’ n

To prove (2.28) it remains to estimate the difference 6x — 67. From (2.6) and (2.40) it
follows that

. Ok +07 . 0 — 0
sin k—; * sin k2 k

1 1
:2|cos0k—cos9,’§| :z\cosﬁk—acosﬁk\

1 1
= — < - ==
2(l a)| cos O] 2(1 a)

Meanwhile, by virtue of (2.42) and (2.43) we have
sinek +0k> 2min B +6k,n— O+ 0%
2 T 2 2

. Zmin{gk T — Hk}> 1

2(n> + 1)

i 27 2 n
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and

* *

T

which, coupled with (2.44), yield

7'5211 7T2

— 0 < <, .
10 = G| 2(n*+1) 2n

At last, we conclude

O1 — Ok < Oy — O + 105y — Orn| 410 — O
_cln(m,) | 7 _cln(ng,)
n n n
This completes the proof supposing (2.29). When condition (2.29) does not hold, the
statement is obvious. [

Lemma 8. If relation (1.5) is true then

0k+17n—9kn>;, k=12 ..n—1, n=2,3,.... (2.45)

Proof. The proof follows the line given by Erdos and Turan [3, p. 718] and [4]. By
Rolle theorem and Bernstein inequality

1 _ Ao (cos 0r) — Aox(cos Oy 1) <c(mn—1)
|01 — O] Ok — O h ’

do |,y

_ ‘d[AOk@os 0)]

which is equivalent to (2.45). [

3. Proof of theorem

It suffices to show the sufficiency according to Banach—Steinhaus theorem. To this
end again applying Banach—Steinhaus theorem it is enough to show that (1.4) holds
for every polynomial.

Assume that P is an arbitrary polynomial. Let N be so large that PePy. Then

n m—1

P(x)=>" > P (x0)Ap(x)

k=1 j=0
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and hence

Z (x)
)

an(P7 X) = |Hnm(P7 X) =

k=1
m—1

Sj-
J=1

n —1

— p(J)

3

=
Il
~
Il
_

(3.1)

(Here we agree that 4 = 0 for j=>my.) To estimate S; we separate three cases when
j=1, j=2,and j=3 (if m = 2 then only the first case can occur).

First, by the same argument as that of [5, Theorem 4.1, p. 73, 74] we can get the
estimations

Sy <3| P|[ Fum(x) (3.2)
and

So<c|[P|] Fum(x), (3.3)
where

\PI = max (1P|
and

rnm(-x) = Rnn1(f17x) + an(va X).

Next, to estimate S; (j>3) we need some preliminaries. Relation (4.12) in [5] states
that

n

D (= xk)* Aok (x) < 2rm(x),

k=1

which, together with (2.5), gives
D (= xa) Ak (%) <20 (). (3.4)

k=1

Using this estimate and applying Lemma B, we obtain estimates

8 nm .
41l < mnl|r ||(sm(9k7é0), k=12, ....n (3.5)

and
| A1k || <4mPr?||raml|, k=1,2,...,n. (3.6)

Now for the estimate of S; (j>3) we use (2.2) and (3.4) to get that for a fixed x,

n

1 4

S;< 1PV IIZIAJk )| <[PV IIZd’ A ()| <cl[PP] Y dilAu(x)
k=1

=PI > Glau@+ D dlAun(x)]

[xx—x|>d} |xk—x| <d?



186 Y. Guang Shi | Journal of Approximation Theory 123 (2003) 173-187

< AP Y —xdux) + > dilAn(x)]
| x—x] >d} Xk —x| <d?

< Pl + D dflA)] |
L |xk—x| <d?

Here we have to estimate the term d?|A41x(x)|. By (1.5) and (2.28),

| Xk — Xgey1| = |cos O — €08 Opp1 | < (Ok1 — Ok ) (sin O + Opy1 — Ok)
lnn< ) In n>
<c sin 0y + ;
n n

|X}< — xk_l\ = ‘ cos 0 — cos 0;_; | < (Qk — Hk_l)(sin Or + 0 — Hk_1)

lnn(. lnn>
<c sin 0 + .
n n

1 1
di.<c nn(sinﬂk—f— nn>7 k=12,....n.
n n

similarly,

Thus

We distinguish two cases.
Case 1: sin 0= (Inn)/n. In this case by (3.5) and (3.8)

5 Inn\*/ . In 1\ > 8mn||Fym]|
dil A (x)|< ¢ sin 0y + .
n n sin 0y,

Inn\? . . 8 ”
<c<nn> (251n9k>2 m’?HrnzH

n sin 6y,
< c(lnn)zurnm”.

n

Case 2: sin 0y < (In n)/n. In this case by (3.6) and (3.8)

2 2
2 A () < c(“;”> ( 0 + “;”) 422 |

Inn\2/_ Inn\>
< c<n”> (2 “") 4212 [Py
n n

(In ”)4Hrnm||
C
n2
C(lnn)z\lran.

n
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Thus in both cases

In n>2||rnm||

d,§|A1k(x)|<c( (3.9)

n

It remains to estimate K, :=card{k: |x; —x|<d?}. Assume without loss of
generality that 0, <n/2, 1<k<n—1. By (2.25) and (2.45)

Ik — Xpa1| = [cos O — cos Oyt | = |2 sin[(Ok + Oy ) /2Jsin[(0x — Ors1) /2]

> ¢|(0 + Ops1) (0 — Opi1)| = c(0k — Orr)* =c/n’. (3.10)
Since (3.8) implies di <c(Inn)/n, we can conclude that
K,<c(Inn). (3.11)

Then by (3.9) and (3.11)

> ani<e ™ 1wl . (.12)
x| <d?
By (3.1)—(3.3), (3.7), and (3.12) we obtain
[ R (P)[I< €[ P[] |- (3.13)
Therefore,
Tim [|Ry (P)]| = 0.

This completes the proof.
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